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Some of the more important developments in science and practical demands in 

commerce have been linked to attempts to detect rare events and rare contaminants, 
ranging from the early “counting” of solar neutrinos to the occurrence of dodder seeds in 
clover.  For moderately rare events (≈5 to 50 counts) we consider limitations of the 
Poisson-normal approximation, together with the apparent problem of excessive false 
positives when a common expression is (mis-)used for detection decisions.  For very rare 
events, rigorous approaches published more than half a century ago are applicable to such 
current problems as trace actinide contamination and nuclear treaty monitoring. 
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1.  Introduction   

A principal objective of this article is to present a consistent approach, stemming 
directly from internationally recommended defining expressions, for the assessment of 
critical (decision) levels (SC) and detection limits (minimum detectable signals) (SD) in: 
a) the moderately rare event range, where the Poisson-normal approximation is adequate 
(nominally 5 counts to 50 counts) [Sect. 4], and b) the rare event range, where the exact 
Poisson distribution must be used [Sect. 5].  Since the groundwork was laid some 50 
years ago (Poisson-normal)1 to 70 years ago (exact Poisson)2,3, the article contains also a 
substantial historical thread.b  

A key element of the approach, for the moderately rare event range, is explicit 
consideration of the uncertainty of the (Poisson) variance estimate (sB

2) of the 
background (B), given the B-count-based degrees of freedom (ν).  In this case both SC 
and SD depend on ν, and the latter depends also on the (Poisson) variance function.  A 
related issue is the mysterious occurrence of excessive false positives, said to occur when 
a “popular expression” for  SC is used in the moderately rare count range -- extending to 
backgrounds of 100 counts or more!  The false positive excess is found to vanish, 
however, when SC is treated as a random variable, with significance (detection) tests 
based on independent (Poisson) variance estimates and the use of Student’s-t. 

We begin with a cautionary note concerning the validity of the Poisson hypothesis 
and  distributions of blanks in real measurement systems [Sect. 2], followed by a concise 
review of detection concepts and relevant international standards [Sect. 3]. 

 

2. IMPACT OF THE BLANK: a cautionary note 
 

While the focus of this article relates to detection capabilities for (moderately) 
rare events that are taken to be strictly Poissonian, it must be recognized that for real 
measurement processes such a state is but an ideal asymptote.  For low-level (decay, 
atom) counting, for example, there exists a substantial literature on the topic of “error 
multipliers” and incremental non-Poisson variance components -- generally manifest by 
an inflated Index of Dispersion (variance/mean)5,6.  Fortunately, in most such cases if 
counts are not too few, the total variance can be estimated reliably by replication (s2), and 
Student’s-t applied for (detection) significance testing (vide infra). 
  More serious, however, is the situation where B-events (background, baseline, 
blank) lack independence, or where B is non-stationary7.  A universal example in low-
level counting (LLC) is the residual mu-meson (µ-) background component, which varies 
with cosmic ray intensity and barometric pressure.  Unless “muon leakage” (direct, 
indirect) is excluded, such variations must be taken into account7.  For extreme LLC, the 
ultimate solution to the muon problem is to go deep underground8,9. 
                                                 
b Two Poisson-normal expressions for detection decisions (“equality of means”), introduced by Hald 
(1952),1 are based on the signal/noise ratio and the Poisson (square-root) variance-stabilizing 
transformation, both including the half-integer continuity correction for small numbers of counts.  This 
appears to be the earliest use of the techniques later adopted by Altshuler and Pasternack (subsequently by 
ISO-11929), and Stapleton, respectively.  (See MARLAP4 for discussion of the latter methods.)  
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Fig. 1   Empirical distribution of 13 
measurements of the NIST 14C (modern 
carbon) closed tube combustion blank 
(CTB).  Estimated  parameters of the fitted 
lognormal distribution are: x  = 0.158 µg, 
s = 0.061 µg (modern carbon). 

 
 
When B derives from sources of 

contamination, its distribution is likely 
to be positively skewed.  An example is 
taken from National Institute of Standards and Technology (NIST) studies of 14C in 
remote atmospheric particles, using sub-micromole accelerator mass spectrometry 
(AMS).  In Fig. 1 thirteen observations of the sample preparation (combustion) blank are 
fitted with a lognormal distribution, but with so few observations the positive tail of the 
distribution is quite uncertain, as is the form of the distribution.  Herein lies the problem: 
In the absence of a rigorous theoretical basis, or a very large number of observations, 
uncertainties in the form and quantiles of the blank distribution may be too great for 
meaningful detection decisions, especially if the distribution is positively skewed.  A 
recommendation to ameliorate the problem: Use replicate, paired observations to 
estimate the net signal ( Ŝ ) whenever possible; that way approximate normality may be 
more readily achieved for the null case (when µS = 0) [Ref. 7, Appendix].  

 
 

 
3.  DETECTION CAPABILITIES: the Poisson-normal approximation 

 
3.1  Defining relations and international standards 

Building on foundations established in the literature of the 1960s, the International 
Union of Pure and Applied Chemistry (IUPAC)10 and the International Organization for 
Standardization (ISO)11,12  have prepared recently a series of international standards and 
recommendations on concepts and expressions for detection and quantification 
capabilities.  Relevant national documents have been produced by the American Society 
for Testing and Materials (ASTM)13,14 and MARLAP4. A recent International Committee 
for Radionuclide Metrology (ICRM) publication8 covers issues specific to low-
background counting.  A very brief summary, using the notation of  Ref. 10, follows. 

Defining relations:  
 
 Critical Value (Level) (LC):  Pr( L̂ >LC | L=0) ≤ α                                             (1) 
 Detection Limit (LD):   Pr( L̂ ≤LC | L=LD)  =  ß                                         (2) 
 Quantification Limit (LQ):  LQ  =  kQ σQ where  kQ = 1/RSDQ                    (3) 
  
where α and β represent the hypothesis testing errors of the first and second kinds (false 
positives and false negatives) -- default value: 0.05 each; and RSDQ represents the 
relative standard deviation at the Quantification Limit --  default value: 0.10.  The generic 

Closed tube blank  (µg, modern carbon [MC])
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symbol (L) refers to net signals (S) or concentrations (x) above the background or 
baseline (B).  The inequality (Eq. (1)) is required for discrete distributions, since only 
selected values of α exist in such cases.  For this reason we introduce the symbol α' to 
represent the actual false positive risk, in contrast to the target value α (0.05 or 0.01 in the 
present text).c   

Notation: In the remaining text we confine our attention to the Poisson signal 
domain, where the variate S represents net counts (or events), with Y and B representing 
gross counts and background (or baseline) counts, respectively.  In keeping with ISO-
353415, we use y, b for observed values of the variates Y and B, and µY, µB for their 
respective mean values (expectations).d  For paired counting the estimate Ŝ  equals (y-b); 
for the other asymptotic case (well-known blank), Ŝ  equals (y-µB).  The variance of S for 
the null state (when µS=0) is represented by σo

2, where σo
2 = σB

2 for the well-known 
blank, or 2σB

2 for paired counting.  More generally, σo
2 = ησB

2, where η = (r+1)/r, with r 
being the number of background replicates (or ratio of background to gross sample 
counting times), when an average background correction is applied.  Estimated variance 
is indicated by so

2, with ν degrees of freedom (ν=n−1, for simple replication).  The 
notation (±) is used to denote standard uncertainties, with the exception of section 4.3.1. 

Note that the treatment of “simple counting” considered here applies equally well 
to the net count resulting from subtraction of the background from the gross count, and to 
the estimation of the net peak area resulting from subtraction of the estimated baseline 
(spectroscopic, environmental) from the integrated gross peak. 
 
3.2  Simplest realization: the normal distribution 

In the normal, homoscedastic (constant variance) case the defining equations 
yield the following simplified expressions for SC and SD, where the expressions to the 
right of the arrows correspond to α = β = 0.05.  The “b” equations apply to the case where 
variance is estimated by replication (as s2) with ν degrees of freedom (df).  Note that in 
Eq. (5b): (1) uncertainty in σo renders the signal detection limit uncertain; (2) the 
approximate expression for the non-centrality parameter (δ), in terms of ν and t, is 
accurate to within 1 % for α, β = 0.05 and ν ≥ 5.10  (Here, the actual value of δ is 3.870.) 

 
SC  =  z1-α σo  →  1.645 σo = 1.645 σB√η                                                    (4a) 

SC  =  t1-α,ν so  →  2.015 so = 2.015 sB√η   [5 df]                            (4b) 
 

SD  =  SC + zß σD  →  2SC = 3.29 σo                                             (5a) 
SD  =  δα,ß,ν σo  ≈  2t1-α,ν (4ν/(4ν+1)) σo  →  3.84 σo   [5 df]                 (5b) 

 
SQ = kQσo = 10 σo                        (6) 

 
 
 

                                                 
c If the assumptions are correct, and the significance (detection) test is performed properly, α' should equal 
α for continuous variables, and α' ≤ α for discrete variables.  (See section 5.)  Incorrect assumptions or 
testing can lead to excessive false positives (α' > α ), as illustrated in sections 4.1 and 4.2.  
d Although observed values (y, b, ...) are necessarily integers, the expectations are real numbers having the 
same dimensionless units (counts). 
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3.3  The Poisson-normal approximation 
The asymptotic (large-count) Poisson-normal distribution is taken as a 

continuous, normal distribution with the special parametric characteristic of the Poisson 
distribution: equality of the mean (µ) and variance (σ2)e.  Three consequences are: (1) the 
variance function (heteroscedasticity) must be taken into account in deriving SD and SQ; 
(2) σB

2, which equals µB, can be estimated as sB
2 = b (observed background counts); (3) 

the confidence interval for µB, given b, is now asymmetric (Section 4.3.1).  For σ-known, 
α=β=0.05, η=2 (paired counting), and kQ=10, the resulting asymptotic expressions are 
 

SC  =  z1-α σo  = z0.95σB√η → 1.645 √(2µB) = 2.326 √µB               (7a) 
SD  =  SC + z1-ß σD  →  z0.95

2 + 2 SC  →  2.71 + 4.65 √µB                          (8a) 
SQ = (kQ

2/2) (1 + [1 + 4σo
2/kQ

2]1/2 ) → 50 (1 + [1 + 2µB/25]1/2)              (9) 

Asymptotic expressions that ignore the effects of heteroscedasticity can be given for SD 
(3.29 σo = 3.29 σB √2 = 4.65 σB) and SQ (10 σo = 10 σB √2 = 14.1 σB).  These expressions 
are correct to within 10 % of the complete expressions (Eqs. (8a), (9)) for µB > 33.8 
counts (67.6 counts for α, β = 0.01), and µB > 1371.9 counts, respectively.f   
 
3.4  “Systematic” uncertainties in SC, SD, and αg   

When a fixed estimate b is substituted for µB in Eqs. (7a) and (8a), the relative 
uncertainties of SC and the asymptotic term (2SC) of SD are equal to the relative 
uncertainty (ur) of √b -- i.e., (u(√b)/√µB).  The numerator reflects the well known 
variance stabilizing transformation of Poisson variates, corresponding to a constant 
standard uncertainty of 0.5.  Thus, to achieve ur ≤ 10 %, requires µB ≥ 25.0 counts.  To 
treat the critical level as a fixed discriminator in this case, however, it is interesting to 
project the uncertainty onto z1-α and ultimately, α. The requisite value of ur(√B) is then 
redefined in terms of the acceptable uncertainty in α, as manifest by the relative 
uncertainty of z1-α.  Constraining α to a standard uncertainty interval of 0.04 to 0.06, for 
example, corresponds to z1-α: 1.555 to 1.751 -- i.e., ur(z) = ur(√B) ≈ 6 %.  To achieve such 
a limit for the α-uncertainty requires µB ≥ (2(0.06))-2, or 69.4 counts -- consistent with the 
author's recommendation of some 35 years ago [Sect. 5, Ref. 21]. 
 
 

4.  MODERATELY RARE (≈ 5 TO 50) BACKGROUND EVENTSh; 
 SC as a Random Variable 

 
Critical value (SC).  When replication variance is estimated as s2 with (n-1) df, as 

in Eq. (4b), reliable detection decisions can be made for moderate numbers of counts 

                                                 
e An improved approximation, for small numbers of counts (n), includes a half-integer “continuity 
correction” n→(n+½) [Ref. 6, section 2.2].  
fThe minimum µB value for the SQ asymptote represents a small correction to the value (1250 counts) given 
in footnote-c of Table II in Currie [1968]16.  The corrected value for the well-known blank case (η=1) is 
2743.8 counts.  Non-significant digits are included here to illustrate the calculations and to emphasize the 
fact that the µ’s are real numbers. 
g The Poisson quantification limit is not considered further, since SQ requires a minimum of 100 counts 
(events) [Eq. (9)]., which is generally beyond the scope of “rare and moderately rare” events.  
h For perspective on the nominal range, see Section 4.3. 
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using t1-α, n-1.  Alternatively, for counting data, an independent estimate of the variance 
(counting variance) is given by the number of counts -- i.e., for the background sB

2=b, 
with ν=2sB

2 degrees of freedom.  In this case (also) SC(b) is a random variable, as shown 
in Eq. (7b). 
 

SC  =  t1-α,ν so  = t1-α,ν sB√η = t1-α,ν √(ηb) →  t0.95, 2b√(ηb)                        (7b) 
 

For η=2 (paired comparison) and b = 10 counts, for example, SC = t0.95,20√(2b) = 2.44√b = 
7.71 counts.  More generally, especially for very few counts, the background variance 
may be estimated as (b+ε) where ε is a small correction term.i   
 Detection Limit (SD).  When σo

2 is estimated as so
2, but σ varies with signal 

magnitude, then the simple expression for SD (Eq. (5b)) does not apply.  In lieu of the 
rigorous treatment of the heteroscedastic non-central-t problem11 [also, Ref. 4, Sect. 
20A.3.1], when α = β one may use the following approximation17, which is conservative 
but accurate to within a few percent when α, β = 0.05 and ν ≥ 5.  
 
 SD ≈ (δ/2) σo + (δ/2) σD = δσ                                                                         (8b)  
 
In the general case, an iterative solution involving the variance function is required, since 
σD is a function of SD.  For a pure Poisson process, where σD

2 = SD + σo
2, an algebraic 

solution obtains, 
 
 SD ≈ (δ/2)2 + δ σo                                                                                            (8c)   
 
Although the approximation (Eq. 8b) is reasonably accurate, SD can have substantial 
uncertainty when σo is estimated as so; a convenient approximation for the relative 
standard uncertainty of the latter is 1/√(2ν), or about 20 % for 12 degrees of freedom.  
 
4.1  The false positive dilemma  

When µB is large, the Poisson-normal expression for SC (Eq. 7a) is commonly 
replaced by the approximate relation 
 
 SC  ≈  z0.95so =  z0.95sB√η = 1.645 √(2b) = 2.326 √b    (7c) 
 
Eq. (7c) is an excellent approximation to the correct Poisson-normal expression (7b) for 
large b; and it might be considered also for b as small as 15 counts (30 degrees of 
freedom), considering the convergence between t0.95,ν and z0.95.  (For few counts 
observed, use of  b+ε is recommended.)  Surprisingly, however, use of expression (7c), 
said to have been popularized by Currie (1968),16 has been reported in the literature to 
result in unacceptable levels of false positives, even for µB as large as 100 counts [Ref. 4, 
Sect. 20.4, 20.A.2, and references therein.].  
                                                 
i Degrees of freedom (2sB

2) for the t-test, and recommended values for ε (ranging from 0 to 1), are based in 
part on Ref. 4 recommendations [Attachment 19D], and expressions for the confidence interval of the 
Poisson parameter (mean, variance)18.  For the purpose of this article, we take ε = 0.5, which is equal to the 
asymmetry (heteroscedasticity) correction for the central (“1σ”) confidence interval of the Poisson 
parameter, derived from the Poisson-normal approximation. (See section 4.3.1.) 
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To explore the nature of this apparent problem, we first reformulated expressions 
(7b) and (7c) to standard form, to give the respective expressions (10b) and (10c) for the 
critical values of the detection test statistics (tP,ν, zP, respectively), as applied.  
 

( Ŝ /so)C = [(y-b)/(sB√η)]C = [(y-b)/√2(b'+ε)]C =  t0.95, 2(b'+ε)   (10b) 
  ( Ŝ /so)C ≈  [(y-b)/(sB√η)]C = [(y-b)/ √(2b)]C = z0.95    (10c) 
 
where b' (or, b'+ε) represents an independent estimate of the variance of the blank. 

There are three notable differences.  (1) The commonly-applied expression (10c) 
carries the assumption that the test ratio ( Ŝ /so) is normally distributed, with its upper 
critical value given as the 95th quantile of the normal variate (z) rather than that of the t-
variate.  (2) Expression (10b) provides improved estimates for the very small count case, 
when used with a non-zero value for ε.  This averts the “zero catastrophe” (unbounded or 
indeterminate values of the test ratio and zero df for t), which, however, can be 
minimized by restricting the Poisson-normal detection test to µB’s such that the 
probability of zero counts -- exp(-µB) -- is negligible; for example, µB > ln 1000 = 6.91 
counts, or µB > 3.45 counts if 2b is replaced by the sum of two independent b-values 
(b'+b'').  (3) Most serious is the subtle application of the same observed value of the 
background counts (b) in the numerator and denominator of the test ratio in (10c).j  
Unless independent b-observations are used for the estimate of the null signal 
(numerator), and the estimate of its variance (denominator), the assumption of normality 
is invalid, and neither zP nor tP,ν can be expected to give correct false positive rates.   (The 
problem is greatly reduced for large counts; and it does not arise in the conventional 
application of the t-test (Eq. 4b), because the replication variance estimate (s2) is 
necessarily independent of the estimated mean.)  

The last point is crucial: The failure of the approximate expression (10c) for low 
to moderate numbers of background counts is not primarily a result of a faulty expression 
for SC (Eq. 7c), but rather the manner in which it is commonly applied, with b 
redundancy  in numerator and denominator (Eq. 10c).  
 
4.2  Empirical ( Ŝ /so) distributions and false positive functions 

Empirical distributions of the correct (independent-b, tP,ν) (Eq. 10b) and the 
approximate (dependent-b, zP) (Eq. 10c) test ratios ( Ŝ /so) were generated by Monte Carlo 
sampling of Poisson variates as a function of µB -- noting that for the independent t-test 
for a given µB, the critical value t1-α,ν had to be adjusted for each “observed” background 
count b', according to the relation ν = 2sB

2 = 2(b'+ε).  Fig. 2 shows a 4-way comparison 
of empirical distributions (N = 2000 each) for (continuous) Poisson-normal variates and 
discrete Poisson variates, for both independent (Eq. 10b) and dependent (Eq. 10c) cases, 
for a moderately small value for µB (8.52) -- selected to be a non-integer, and small, yet 
large enough that the probability that b=0 would be negligible. 

 
 
 

                                                 
j According to Ref. 4  [Sect, 20.A.2], use of the same observed value b for both the estimated net signal and 
its estimated variance is a common practice, even for low-level counting, despite the correlation introduced.  
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Fig. 2  Normal probability plots of empirical distributions of the test ratio 
'2/)(/ˆ bbysS o −=  for the null case, for Poisson-normal data (top pair) and Poisson 

data (bottom pair) .  Numerator and denominator are independent for the plots at the left 
(b ≠ b'); they are not, for the plots at the right (b = b').  Each data vector (y, b, b') 
comprised N = 2000 computer-generated random samples from probability distributions 
with expectation (µB) 8.52 counts. 

 
 
It is evident from the plots that: the independent-b ratios are generally similar to t-

distributions, while the dependent-b ratios show a pronounced positive skew, consistent 
with excessive false positives, and certainly not normal as had been assumed in the 
application of z0.95 as the test statistic in Eq. (10c).  Also, the shapes of the (Poisson-
normal, and discrete Poisson) data distributions are generally the same, with the 
exception of the pronounced granularity in the Poisson case. 

The conclusion is clear: Whether the distribution is discrete (Poisson) or 
continuous (Poisson-normal), at the moderate count level of Fig. 2 (8.52 counts) the use 
of independent background counts in the t-test (α=0.05) gives reasonable false positive 
rates (α' ≈ 0.049±0.002), whereas use of dependent Ŝ /so ratios yields nearly doubled false 
positive rates (α' ≈ 0.085±0.003).  Increased background counts, however, result in an 
asymptotic approach to normality (Fig. 3), with a reduction (1) in granularity and 
excessive false positives, and (2) in the difference between the actual critical value (k0.95) 
and that of the normal variate (z0.95).  Although the latter difference is reduced to about 
10 % for µB = 50.0 counts, actual false positives (α') are still needlessly inflated at 0.062 
(for α=0.05) and 0.019 (for α=0.01).  

 
 
 
 
 

'2/)(/ˆ bbysS o −=

normal

Poisson

independent (b≠b') dependent (b=b')

S/so S/so

4-way simulation  [µB = 8.52 counts] test ratios: (S/so)
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Fig. 3 Empirical (N = 2000) dependent, Poisson test ratios and 95th percentile estimates 
(k0.95) vs µB.  As µB increases, skewness and granularity decrease, and k0.95 approaches 
the normal asymptote (z0.95).  (Abscissa is osS /ˆ ; ordinate is the cumulative percentage.) 
 
 
 
False positive (α') functions for the moderate range of background events are 

displayed in Fig. 4 for the target α equal to 0.05 and 0.01, respectively -- covering the 
range: µB = 2.0 counts to µB = 50.0 counts.  The three curves in each figure correspond to 
the “correct” independent t-test (o:curves), the independent z-test (+:curves), and the 
common, but incorrect, dependent z-test (x:curves).  It is clear that the independent t-test 
gives acceptable results over the entire moderate count range, with the independent z-test 
showing relatively small bias (≈10%) for µB>15 counts (α=0.05) or 50 counts (α=0.01).  
(These values derive from the relation: t1-α',ν = z1-α where α'/α is the bias ratio.)  The 
common, but faulty (dependent) z-test (x:curves), however, produces excessive false 
positives over the entire range.  For the best performance of the independent-t test for the 
smallest background counts (µB<10 counts), σo

2 was estimated as (b'+b"+ε) rather than 
2(b'+ε), as discussed in the following section.  

Consistency of the observed α' with the target value (0.05, 0.01) for the t-curves 
(o:curves) is seen for all points in Fig. 4 for µB≥5.0 -- i.e., µB = 5.0, 8.52, 20.2, 35.4, 50.0.  
In fact, the observed α'-means for the two sets of five points are: 0.0498±0.0010 (α=0.05) 
and 0.0097±0.0004 (α=0.01). 

 
 
 
 
 
 

Approach to normality 
[dependent ratio: b = b']              [asymptotic  k0.95 = 1.645]

µB=2.0 counts            µB=8.52 counts          µB=20.2 counts        µB=50.0 counts

k0.95 ≈ 2.7                             2.2                          2.0                            1.8
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Fig. 4   False positive functions (with standard uncertainties ≈ symbol size): α' vs µB, for the 
target α equal to 0.05 (or 0.01) and three ways of performing the detection test, as discussed 
in Section 4.2 (N ≥ 104 per point.).  The upper, red (x) curves represent spurious false 
positives because of the lack of independence between the observed differences Ŝ  and the 
variance estimates so

2
  -- both being based on the same background estimates (b = b').  The 

other curves are based on independent test ratios (b ≠ b') and z1-α (green, + curves) or t1-α,ν 
(blue, o curves).  While z1-α is asymptotically correct, t1-α,ν must be used for small numbers of 
counts.  For the correct, t-curves (o) all points between µB=5.0 and µB=50.0 are consistent 
with the target α (0.05, 0.01). 

 
 
 

4.3  At what point must we abandon the Poisson-normal approximation? 
There is no unique answer to this question, but a number of criteria lead to similar 

results, generally consistent with the notion that the approximation “ ... is quite accurate 
enough even below µ = 10 counts.” [Ref. 6, p. 22].  Apart from the discrete-continuous 
dichotomy, perhaps the most serious difference lies in the skewness of the Poisson 
distribution vs the symmetry (and negative tail) of the Poisson-normal distribution for 
very small µB, setting limits to the validity of the t-test.  Considering the expression (Eq. 
7b) for SC as t1-α,νso or [t1-α,νsB√2] with variance estimates so

2 = (b'+b"+ε) or [sB
2 = (b'+ε)], 

we would require that the Pr(b'+b"≤ 0) or [Pr(b'≤0)], given µB, be negligible for both 
distributions (equality for Poisson, inequality for Poisson-normal).  If “negligible” is 
taken as 10-3, then the replicate background (b'+b") with expectation 2µB corresponds to 
minimum µB values of  (ln 1000)/2 = 3.45 counts (Poisson) and z0.001

2/2 = (-3.09)2/2 = 
4.77 counts (Poisson-normal).  For the single background count (b' with expectation µB), 

False Positive Functions
[x: Dependent (b=b'),z1-α +: Indep.(b≠b'),z1-α o: Indep.(b≠b'),t1-α,ν]

mean background counts (µB)
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twice as many counts would be required: µB = 6.91 and 9.55 counts, respectively.  The 
empirical (independent-t) false positive functions in Fig. 4, which use (b'+b") for µB < 10 
counts, are consistent with these bounds, showing reasonable agreement with the target 
α’s (0.05, 0.01) for mean backgrounds of 5.0 counts and above.  Divergence below that 
point (e.g.,  at µB = 2.0 counts) yields conservative results (too few false positives) -- an 
effect that becomes more pronounced for smaller target α’s.   

 
4.3.1  Confidence intervals (CI) for µ, given b  

Comparison of Poisson-normal vs exact Poisson confidence intervals (1) serves as 
an objective guide to the effect of α on the transition point, and (2) provides the basis for 
the rigorous Poisson treatment of detection capabilities in the next section. 

 The Poisson-normal confidence interval  is the solution to the two-sided equality, 
(µ−+ zP√µ−) = b = (µ+−zP√µ+), having a (2P-1) two-sided confidence level with limits µ−, 
µ+.  The commonly-used first order solution is µ± = b ± zP√b, .  The second order solution 
corrects for heteroscedasticity bias with the addition of the term zP

2/2 -- the basis for our 
having selected ε = 0.5 for the midpoint (b+ε) of the “central” (1σ) confidence interval 
for σB

2.  The full solution, given in Eq. (11), can be further improved with a continuity 
correction [b→(b−0.5) for µ−, and b→(b+0.5) for µ+ ].  
 

µ± = b + zP
2/2 ± zP√(b + zP

2/4)                                                                          (11) 
 

The exact Poisson confidence interval was derived by Garwood18 [1936], who 
included a table of 2-sided limits for α = 0.05 and 0.01, and b = 0 to 50.  A preferred 
formulation of Garwood’s solution is 
  

µ± = (sB
2(χ2/ν)P,ν)±                                                                                               (12) 

 
where ν = 2sB

2 with lower and upper limits based on [sB
2=b; P=α]−, [sB

2=(b+1); P=1−α ]+, 
respectively.  

To illustrate, taking b=9 counts and α=0.05, we find (µ−, µ+) limits for 90 % 
confidence intervals to be (5.24, 15.47) [Eq. (11)], and (4.70, 15.71) [Eq. (12)].  The two 
types of CIs differ primarily in their lower limits, which agree to within about 10 % for 
b≥10 (α=0.05) and b≥16 (α=0.01) -- corresponding to Poisson µ−’s of 5.43 and 8.18. 
Including the continuity correction reduces the “10 % b-values” to 4 and 10, 
respectively.k   

 
 

5.  DETECTION OF RARE EVENTS: some ancient (and modern) history 
 
 The final segment of this article treats the “rare” count region, within which the 
Poisson-normal approximation is no longer adequate, and where the granularity 
(discreteness) is extreme.  As a result of the broad importance of rare event detection in 

                                                 
k The first few µ’s from Eq. (12) for b = 0, 1, 2, 3 are: [α = 0.05] µ− = 0, 0.0513, 0.355, 0.818; µ+ = 2.996, 
4.74, 6.30, 7.75;  [α = 0.01] µ− = 0, 0.0101, 0.149, 0.436; µ+ = 4.61, 6.64, 8.41, 10.05.  Such solutions to Eq 
(12) are central to the construction of critical values and detection limits for the exact Poisson treatment in 
section 5.1 (and Fig. 5.) 
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numerous disciplines and eras, formulation of exact Poisson approaches appeared many 
years ago.  As early as 1937 research was published on the use of a modified-Bessel 
function to describe differences between two Poisson variates19; such work continues 
today20.  The accounts of rare event detection (decisions and capabilities) discussed here, 
representing the two limiting cases: (well-known background) and (paired counts), are 
based on publications from 197221 and 19393, respectively.  The stimuli for these early 
works, indicated in Sections 5.1 and 5.2, were both important and diverse.  Current 
applications are no less so, including trace radionuclide monitoring in connection with 
the Comprehensive Nuclear Test Ban Treaty22, and the search for extremely rare events 
in particle physics9.  (See Section 6.) 
 
5.1  Exact Poisson Case-I: well-known background21  
 The stimulus for the method presented here was the need to assess detection 
capabilities for very low levels of noble gas radionuclides, including 37Ar produced by 
solar neutrinos23.  Knowledge of the background makes the development quite 
straightforward and amenable to convenient graphical and tabular solutions, and broadly 
applicable to extreme low-level counting systems having stable backgrounds or baselines.  
Given the expectation for the background counts (µB), one can utilize the cumulative 
Poisson distribution to calculate the critical number of (gross) counts yC, considering the 
error of the first kind (α), and then the gross count detection limit yD, considering the 
error of the second kind (β).   These values follow from the defining equations (1) and 
(2), adapted to this special case.l  
 
 Critical value:  Pr(y>yC | µY=µB) ≤ α                                              (13a) 
 Detection limit: Pr(y≤yC | µY=yD) = β                                              (13b) 
 
Derived relations for the net signal are then: SC = yC - µB, and SD = yD - µB. 
 As a convenient overview, a combined graphical-tabular representation of the 
results is presented in Fig. 5.  For the table, the row in which µB falls (col. 2) is used to 
find yC (col. 3) and yD (col. 4).  For the graph, the envelope of the saw-tooth curve 
represents the relation between µB (abscissa) and the background equivalent activity ratio, 
RHO = SD/µB (ordinate).  Corresponding yC values are given by the integers above the 
curve. 

                                                 
l Alternatively, yC and yD can be derived from Eq. (12), taking advantage of the duality between confidence 
intervals and significance tests.25   
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Exact Poisson-I  (well-known blank)
graphical & tabular critical levels (yC) and detection limits (yD)

α (minimum)a µB (range) yC = SC + µB 
(α ≤ 0.05) 

yD = SD + µB 
(β = 0.05) 

               --         0 - 0.051 0 3.00 
           0.0013 0.052 - 0.35 1 4.74 
           0.0060 0.36   - 0.81 2 6.30 
           0.0089 0.82   - 1.36 3 7.75 
           0.013 1.37   - 1.96 4 9.15 
           0.016 1.97   - 2.60 5 10.51 
           0.018 2.61   - 3.28 6 11.84 
           0.020 3.29   - 3.97 7 13.15 
           0.021 3.98   - 4.69 8 14.44 
           0.022 4.70   - 5.42 9 15.70 
a.  For each µB range, α varies monotonically from αmin to 0.05 
 

 
Fig. 5 Exact Poisson-I (well-known blank) critical levels and detection limits21 (α, β = 
0.05).  Integers in the graphical and tabular representations are critical values of gross 
counts (yC).  Abscissa and column-2 are background counts (µB).  The gross count 
detection limit (yD) is shown in column-4. The saw-tooth curve links µB, yC (integers 
above the curve), and the background equivalent net count detection limit (RHO = SD/µB). 

 
 
 
5.1.1  Example: application to low-level detection of  85Kr in the atmosphere24.   
 To illustrate, we consider the (α, β = 0.05) detection capabilities of the NIST low-
level 5 mL gas GM/proportional counting system in an hypothetical 85 min screening 
experiment for small samples of atmospheric 85Kr.  The pertinent characteristics of the 
NIST system are the “well-known” background rate (1.2 h-1) and the 85Kr counting 
efficiency (Eff = 0.65).  As a result, µB = 1.7 counts.  Referring to Fig. 5, we find: that the 
corresponding value for yC is 4 counts (integer), that the false positive risk (α') falls 
within the range 0.013 to 0.050m, and that the gross count detection limit yD is 9.15 
counts.  Thus, SD = (9.15-1.70) = 7.45 counts; and the corresponding detection limit for 
85Kr equals SD/(0.65·85) disintegrations per minute, or 2.25 mBq.  If y=1 count were 
observed in an 85 minute screening experiment, we would conclude “n.d.” (not detected), 
with a 90 % (gross count) confidence interval of (0.051, 4.74) counts -- corresponding to 
an upper limit of 0.92 mBq 85Kr.  Note that the alternate graphical solution (Fig. 5) 
permits one to see at a glance that µB = 1.7 counts intersects the curve at yC = 4 counts; 
and that a horizontal line extended from that point meets the ordinate at RHO = SD/µB = 
4.4.  Thus, the minimum detectable activity is 4.4 times the background equivalent 

                                                 
m The actual value (α' = 0. 030) equals Pr(y>4 counts| µY=1.70 counts). 
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activity -- i.e., 4.4 (0.51 mBq) = 2.24 mBq.  If more stringent criteria were required (e.g., 
α, β = 0.01; and 98 % CI), application of Eqs. (12) and (13) give (for µB = 1.70 counts): 
yC = 5 counts and yD = 13.11 counts.  The latter corresponds to a minimum detectable net 
signal of 11.41 counts, which is equivalent to a minimum detectable 85Kr activity of 3.44 
mBq.  If y=1 count were observed (in 85 min), the result remains “n.d.”, but the more 
conservative confidence limits (0.01, 0.99) correspond to 0.010, 6.64 gross counts, such 
that the upper limit for 85Kr activity would equal 1.49 mBq.  
 
5.2  Exact Poisson Case-II: paired sample, background counts3 

 The stimulus for the development of a rigorous treatment for the second 
asymptotic case, involving the comparison of two Poisson variables, was totally different: 
the need to detect rarely occurring dodder seeds in large amounts of clover.n  This was a 
problem of some practical importance, however, because the contaminating seeds belong 
to the class of twining herbs that are parasitic to plants.  It is noteworthy that dodder seed 
research is still of considerable interest: An article by J.B. Runyon, et al. in the 29 
September 2006 issue of the journal Science (v. 313, p. 1964) presents new insight into 
the role of "volatile chemical cues" in guiding a parasitic plant (dodder) to a host (tomato 
plant).  Such directed growth is essential for survival; the rootless parasite must locate 
and attach to a host within a just a few cm and a few days, or it dies.  In the context of the 
present article, the detection of the rarely occurring dodder seeds is the analog of the 
detection of rarely occurring nuclear particles or decays. 
 Unlike the previous section, where the challenge was to detect a significant signal 
above a well-known background, the challenge here is to detect a significant difference 
between two low-level Poisson variables.  The sample space is now 2-dimensional, with 
a critical boundary replacing the critical level of the single Poisson variable.  
Przyborowski and Wilenski formulated the problem by first expressing the joint 
probability law for observations x, y as 
 
 Pr(x,y | µx,µy) = (µx

x·µy
y/x!y!)·exp(-(µx+µy))                                                    (14) 

 
where, in terms of low-level counting, x and y represent background counts (b) and gross 
counts, respectively; µx and µy are their expectations.  
 Eq. (14) can be transformed into a more interesting form (Eq. 15) using the 
following substitutions:  n = x + y,   µ = µx+µy ,   ρ = µy/(µx+µy). 
 
 Pr(x,y | ρ, µ) = [(µn/n!)·exp(-µ)][(n!/(y!(n-y)!))ρy(1-ρ)n-y]                                (15) 
 
 Critical region.  The critical, or rejection, region (w) is defined on a 2-
dimensional (integer) grid of the possible sample points E(x,y) lying beyond the critical 
boundary.  For a given n, the partition into y and x = n - y is governed only by the second 
factor in Eq. (15), which is a term in the binomial expansion of  [(1-ρ)+ρ]n.  For the null 
hypothesis, µy = µx, so ρ = ½.  Thus, for each n, taking α = 0.05, the critical value for y is 

                                                 
n The contamination level of concern (to the International Seed Testing Association, in the mid-1930s), was 
in the range of a few dodder seeds per 100 g sample of clover seeds (≈5 x 104)  -- i.e., a number 
concentration of ca. 10-4.  Observed number concentrations of the contaminant seeds varied from 0 to 36 
per kg clover2  
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given by Pr(y>yC | n, ρ=0.5 ) ≤ 0.05, independent of µ.o  The yC are simply 1-sided 
critical values for proportions; the critical boundary is their union. If n = 12 counts, for 
example, the integer yC derives from the 95+ percentile of the binomial distribution F(12, 
0.5), which equals 9 counts.  (In this particular case, α' = 0.019.)  In Fig. 6, for x ≤ 10 and 
α' ≤ 0.05, the critical region corresponds to the 2-dimensional integer space above the 
dashed curve, which links the yC points. 
 Detection limit. Evaluation of the detection limit requires that the full probability 
equation (15) be considered, with the power function (1-β, given α) given by 
 

 P{E ∈ w | ρ, µ} = ∑
∞

=0n

(µn/n!)·exp(-µ) ∑
),( αnw

(n!/(y!(n-y)!))ρy(1-ρ)n-y                 (16) 

where (E ∈ w) refers to all observable points E(x,y) that lie within the critical region w.  
In Ref. 3, on the basis of Eq. (16), contours of fixed power (given α) are presented as a 
function of the expectations µx, µy.  From these data, taking α and β to be 0.05, we 
derived the minimum detectable gross count (yD) function, shown as the solid curve in 
Fig. 6.  For comparison, yD values, taken from MARLAP’s “true values of SD” tabulation 
[Ref. 4, Table 20.3 (final column)] are shown as points falling just below the yD line in 
Fig. 6.  (MARLAP values are tabulated as SD [last column]; MARLAP yD's were 
calculated by adding the corresponding µB's [first column of Table 20.3].) 
 
 
 

Fig. 6  Exact Poisson-II (paired 
observations) critical region and 
detection limits3 (α, β = 0.05).  
The dashed curve is the critical 
boundary, linking critical value 
points to the discrete observables 
x (b-counts), and y (gross counts).  
(The critical, rejection region [w] 
lies above the dashed curve.)  The 
solid curve represents the (gross 
count) detection limit (yD) as a 
function of the continuous 
variable µB.  Selected yD values 
(+) from Ref. 4 [Table 20.3 (last 
column, SD) plus (first column, 
µB)] are given for comparison.  
 

 
 
 

                                                 
o There is a subtle difference in critical values in Ref. 3, where the significance test was equivalent to 
Pr(y≥yC | n, ρ=0.5) ≤ 0.05.  The critical region w, however, is unaffected; and the yC’s given here are 
consistent with the test as defined above (y>yC).  Also: ρ, as used here, is the complement of the ρ in Ref. 3. 
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5.2.1  Application. 
 The most stringent application of Fig. 6 occurs when the one observes zero 
background counts (b), as sometimes occurs in α-particle monitoring.  In such a case for 
α = 0.05, even as many as 4 gross “sample” counts would not be interpreted as 
significant; and for a near zero “true” background (µB) the minimum detectable signal (yD 
≈ SD, in this case) would be ≈ 9.1 counts. 
 Reconsidering the 85Kr example for paired counting, we find from the solid curve 
in Fig. 6,  for µB = 1.7 counts, that yD = 14.6 counts, corresponding to an increase in the 
minimum detectable activity to 3.9 mBq 85Kr.  To further illustrate nature of this 
approach, we show in Fig. 7 (x,y)-projections of bivariate frequency histograms for the 
null case (µx = 1.7 counts, µy = 1.7 counts), and for 85Kr at the detection limit (µx = 1.7 
counts, µy = 14.6 counts).  Each of the plots is based on N = 2000 random (Monte Carlo) 
samples for both variables.  Resulting from these numerical experiments were α' and β 
estimates of 0.0045±0.0015 and 0.048±0.005, respectively -- consistent with the defining 
expressions (α' ≤ 0.05, β = 0.05), and with the significant decrease in false positive risk 
for very few (expected) background counts.p 

 
 

 
 
 
Fig. 7 Exact Poisson-II: 
Projections are shown for 
empirical (N=2000) bivariate 
distributions (α, β = 0.05):  1) for 
the blank (*) [µY = µB = 1.7 
counts] showing false positives: 

0045.0ˆ =α ; and 2) for the gross 
count detection limit (□) [µY = 
14.6 counts, µB = 1.7 counts] 
showing false negatives: 

048.0ˆ =β . 
 
 
 
 
5.2.2  Rare event detection generalized.  
 The approach developed in Ref. 3 (Fig. 6) is applicable to a wide array of rare 
(Poisson) events, beyond radioactive decay -- such as accidents, unusual contamination 
incidents, equipment or material failures, etc.6   A recent case in point involves laboratory 
accidents, where in sequential years the number of accidents reported in a specific 
laboratory were 2 (x) and 4 (y), respectively.  If the Poisson model is valid in this case, y 
would have had to exceed 8 (yC) for an increase (in expectations) to have been considered 

                                                 
p For a 1-sided target-α of 0.05, Ref. 3 shows that α' ranges from 0.034 for µ = 25 counts to 0.012 for µ = 5 
counts.  Extrapolation for the present example (µ = 2·1.7 = 3.4 counts) gave α' ≈ 0.006.  A more precise 
“experiment” (N=8000) gave α̂ = 0.0050±0.0008. 

Exact Poisson-II
(dual simulation: yD = 14.6 counts, µB = 1.7 counts)

b-counts

y-
co

un
ts

critical
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“detected” [Fig. 6: 1-sided test (µy>µx; α=0.05) or 2-sided (µy≠µx; α=0.10)].  If the 
unknown base level (µx) were 2.5, for example, yD would be 16.6, and the minimum 
detectable increase (SD) would be 14.1 accidents. 
 An even more recent example of generalized rare event detection, reported in the 
press [Washington Post, 17 October 2006] relates to the diversion of aircraft as a result of 
smoke, especially in the cockpit.  According to US Federal Aviation Administration 
records, the rate of such rare diversions in 2005, for example, was 3.2 per 105 flights in 
the US, for a total of 320 for the year.  It was reported also that such diversions had 
become sufficiently rare that they were now considered "random," but that during a 2 day 
period in late September 2006, there were "several such incidents."  In the context of Fig. 
5 (α, β = 0.05), we may ask: How large must "several" be, to be considered significantly 
different from a baseline rate (320/365)·2 per 2 days, for a Poisson process?  The result 
(yC) is 4, and the corresponding detection limit (yD) would 9.15.q  (In this particular case, 
taking the 95% confidence interval for the baseline rate per 2 days, to be 1.56 to 1.95, 
would still place it in the yC=4 row of the Fig. 5 table.)   
 To illustrate another important application of Fig 6 for planning low-level 
radioactivity measurements, considering x, y as background and gross counts with means 
µx, µy, one can pose the question: How many background counts are necessary to ensure a 
95 % chance of detection when the (net) signal/background ratio is 5:1?  This is quickly 
determined graphically, by looking for the intersection with the yD curve of a line from 
the origin with slope yD/µB = 6.0.  The requisite background count (µB) is 2.93 counts. 
 
 

6.  SOME CLOSING REMARKS AND OBSERVATIONS 
 

Key observations from of our exploration of low-level (Poisson) detection issues 
are: (1) that moderately rare events may be treated adequately down to ≈ 2 to 5 counts 
(µB) using the Poisson-normal approximation, with central and non-central t statistics 
used in connection with SC, and SD, respectively.  The reported failure of the classic 
(Poisson-normal) test to control false positives in this range resulted primarily from the 
way in which the test was performed, using the same background observation (b) in the 
numerator and denominator of the experimental t-ratio; (2) that rigorous treatment for the 
detection of “rare” events (e.g., µB down to a fraction of a count) was found in documents 
published long ago (as early as the 1930s).  Two specific “exact Poisson” approaches 
were reviewed and illustrated, for the well-known blank and for paired sample-blank 
counting, using published data on 85Kr measurement capabilities from the NIST low-level 
gas counting laboratory.  Related issues that deserve emphasis follow. 

Validity of the Poisson hypothesis.  Apart from the initial cautionary tale of 
significant non-Poisson and even non-normal blank distributions [Section 2], the entire 
treatment given here rests on the validity of the Poisson model.  That must be tested in 
each context, especially for backgrounds and blanks.  Failure of the Poisson 
approximation of the binomial distribution for short-lived radioactivity is well known, as 
is use of the index of dispersion to test for equality of the mean and variance.  Low-level 
counting backgrounds, however, have been found to be especially vulnerable to certain 
                                                 
q These results are intended strictly to illustrate an approach to an actual rare event problem.  To address the 
"real" problem, many assumptions would need to be specified and adequately tested. 
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subtle artifacts, as manifest, for example, by deviations from the exponential distribution 
of inter-arrival times26.  An excellent source for guidance on the general topic is the 
monograph by Cox and Lewis6.  Especially pertinent and instructive, also, is the detailed 
investigation of Poisson model validity2 that preceded its application to dodder seeds.r  

Brief perspective on detection capabilities. Two important comments are in order: 
(1) Detection limits (minimum detectable signals SD, disintegration rates, concentrations, 
...) are particularly relevant as measurement process performance characteristics, useful 
for planning, method comparison, and advance assessment of method adequacy for 
specific applications.  Use of SD as a critical (decision) value should be discouraged, as 
well as its use as a surrogate upper limit for “non-detects,” which suppresses new 
information.  (2) Experimental detection limits are necessarily estimates, having 
uncertainties that can be relatively large, especially when few degrees of freedom are 
involved.   

Rare nuclear events-I: Dominant null state and multiple detection decisions.  In 
low-level monitoring of rare events the spectral or environmental baseline is apt to be 
largely “empty,” consisting primarily of background noise.  As a  result there will be 
many null decisions and a corresponding increase in the overall false positive risk.  To 
control the overall risk to 0.05 for n null decisions, for example, the critical value must be 
increased such that (1-0.05) = (1-α)n, or α≈0.05/n.17  Such a procedure has been proposed 
by De Geer in connection with the extensive nuclear monitoring program of the 
Comprehensive Nuclear Test Ban Treaty Organization22.  In the case of gamma-ray 
detection, De Geer found also that the spectral baselines were sufficiently smooth that the 
increase in SC could be minimized by increasing baseline width well beyond that of 
gamma-ray peak width.   As a consequence, peaks having very few counts could be 
assessed rigorously using the well-known background Poisson treatment (Fig. 5).  
Consistent with false positives that had been experienced, and with the naming of 84 
nuclides relevant to the detection of a nuclear weapon test, α was reduced to 0.0005.  For 
a baseline (µB) of 1.20 counts, for example, yC would be increased from 3 counts (for α = 
0.05) to 6 counts (for α = 0.0005); and the minimum detectable net peak area (SD) would 
then be equal to (11.84-1.20) counts.s 

Rare nuclear events-II: “Dββ0ν”  We close with a glimpse at one of the most 
heroic low-level experiments in fundamental particle physics today: the detection of 
neutrinoless double beta decay.  (Ray Davis’ experimental discovery of solar neutrinos, 
resulting in a Nobel Prize, was perhaps the first such heroic experiment.23)  The Dββ0ν 
work published in 2005 by R. Arnold (and 47 coauthors)9 represents an extremum of rare 
nuclear event detection research, with a background rate (in the critical energy window) 
of ≈ 1 count per 125 days, using a 0.932 kg target of 82Se, deep underground in Fréjus, 
France.  (The Fréjus Laboratoire Souterrain de Mondane [LSM] has a depth of 4800 
meters of water equivalent [m.w.e], and a surface muon shielding factor in excess of 
                                                 
r Historical Footnote:  The dodder seeds publication of Przyborowski and Wilenski3 concludes with a 
poignant footnote (p. 319), where the editor of Biometrika, E.S. Pearson, indicated that he had made 
“certain modifications and additions to the paper since it was received for publication at the beginning of 
July 1939, [because]... circumstances have unfortunately made communication with the authors 
impossible.”  [September 1939 marked the beginning of World War II, with the invasion of Poland.]  
s Because of the discrete nature of the Poisson distribution, the actual value α'  (0.00025) for  µB = 1.20 is 
less than 0.0005. (β is unaffected.)  Note that an extended range for α is given in Table 2 of Ref 22; a table 
similar to that in Fig. 5 may be derived also through the use of Eq. (12).  (See also Section 5.1.) 
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6× 106.)  Phase-I of the study, completed in September 2004, was characterized by 0.993 
kg-y exposure, with a (partly modeled) background of 3.1±0.6 counts, and a gross signal 
of 5 counts observed from the 82Se target.  Neutrinoless decay was not detected in phase-
I, but limits were set for the half-life (>1023 a) and effective neutrino mass (<4.9 eV, shell 
model).  Using Eq. (12) we can set confidence limits for the gross counts; and using a 
bounding technique for µB we can use Fig. 5 to form a somewhat conservative estimate 
for the detection limit -- i.e., if µB+ is taken as 3.7 counts, the corresponding critical value 
is 7 counts, and SD, which may be useful for planning, is roughly 9.5 counts.  The 
investment is huge; phase-II of the research, initiated in December 2004, is scheduled to 
continue for a 5 year period.  
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Topics

• Perspective: Impact of the blank (B)

• Detection capabilities: Poisson-normal approximation
• Asymptotic expression; large numbers of counts 

• "Moderately rare" (background ≈ 5 - 50 counts)

• Exact Poisson treatment (some ancient history)
• Special issues: Ho dominance; global vs local B estimates
• Well-known background
• Paired observations (y, b -- counts)

• Summary
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B as: Baseline, Blank, Background

• Issue-1: Non-Poisson error (systematic, random) 
components must not be ignored

• Issue-2: Such B's are often positively skewed, but 
limited observations restrict the ability to define 
tails of the distributions, e.g.,
• NIST-WHOI, AMS blanks (C-14C)
• recommendation:

paired observations 
[central limit theorem]

 MCµg 16.0=B

µg  modern carbon (MC)
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Part-1

• Detection capabilities: Poisson-normal 

approximation
• Asymptotic expression; large numbers of counts 

• "Moderately rare" (background ≈ 5 - 50 counts)

• The "false positive" dilemma
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Detection: Poisson-normal approximation

• Defining relations (ISO, IUPAC, MARLAP) [S=net signal=(y - b)]

detection decision:  Pr (S>SC| µS=0) ≤ α (default: 0.05)
detection limit:         Pr (S≤SC| µS=SD) = β (default: 0.05)

• Poisson-normal approximation (paired (η=2); counts)

SC ≈ z1-ασo = z0.95√(2σB
2) = 1.645 √(2µB) = 2.326 √µB

SC ≈ tν,1-αso = tν,1-α√(2sB
2)

where sB
2 = replication-s2 (ν = n-1, d.f.)

or,  sB
2 = b (Poisson-s2) (ν = 2b)
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Poisson-normal: false positive (SC) dilemma
[y=gross counts, b=background counts, S=net counts]

• "commonly used formula"
SC ≈ 2.33√b = z1-α√(2b), or:

SC/so = z1-α = (y-b)C/ √(2b)

• better:

(y-b)C/ √(2b') = tν,1-α

(y-b)C/ √(b'+b") = tν,1-α

where b, b', b" are independent   
background observations

"commonly used" problems
• tν,1-α more appropriate 

• SC, so dependence
(non-normal ratio; excessive 
false positives)

• the "zero catastrophe"
(minimize Pr(b)=0, by limiting 
application to µB> 6.9 (or 3.4) 
counts) [also: granularity]
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Simulation-1 [µB = 8.52 counts] Test Ratios: (S/so)
'2/)(/ˆ bbysS o −=

normal

Poisson

independent (b≠b') dependent (b=b')

S/so S/so
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False Positive Functions
[x: Dependent (b=b'),z1-α +: Indep.(b≠b'),z1-α o: Indep.(b≠b'),t1-α,ν]

mean background counts (µB)

fa
ls

e 
po

si
tiv

es
 o

bs
er

ve
d 

(α
')

α = 0.05

α = 0.01
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Approach to normality 
[Dependent ratio: b = b']              [Asymptotic k0.95 = 1.645]

µB=2.0 c                 µB=8.52 c            µB=20.2 c            µB=50.0 c

k0.95 ≈ 2.7                            2.2                           2.0                            1.8
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Near the Breaking Point  (µB=2.00 counts)

dependent

independent

MARLAP-A (b=b') Altshuler-Pasternack

Hald-Stapleton (√)This work (b≠b')

S/so S/so
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Part-2

• Exact Poisson treatment (some ancient history)

• Special issues: Ho dominance; global vs local B 
estimates, e.g.: gamma-ray peak detection by the 

Comprehensive Nuclear Test Ban Treaty Organization

• I:  Well-known background  (y - counts, µB)

• II:  Paired observations (y, b -- counts)
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Extreme Poisson Counting ('rare events')
some ancient history (graphical, tabular solutions)

• yC, yD directly from defining relations

• I:  y (Poisson), µB; well-known blank (Currie: 1972, 1984)

• II:   y (Poisson), b (Poisson); paired counts

(Przyborowski & Wilenski, dodder seeds: 1935, 1939)

• Special issue: low-level monitoring (DeGeer, 2004: 'global' bg, 

Ho dominance, multiple detection decisions [α →α/n])

• Example: NIST low-level gas counting [µB=1.7 counts; 85Kr]
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Extreme Poisson-I  (well-known blank, 1972+)
graphical & tabular critical levels (yC) and detection limits (yD)

α (minimum)a µB (range) yC = SC + µB 
(α ≤ 0.05) 

yD = SD + µB 
(β = 0.05) 

               --         0 - 0.051 0 3.00 
           0.0013 0.052 - 0.35 1 4.74 
           0.0060 0.36   - 0.81 2 6.30 
           0.0089 0.82   - 1.36 3 7.75 
           0.013 1.37   - 1.96 4 9.15 
           0.016 1.97   - 2.60 5 10.51 
           0.018 2.61   - 3.28 6 11.84 
           0.020 3.29   - 3.97 7 13.15 
           0.021 3.98   - 4.69 8 14.44 
           0.022 4.70   - 5.42 9 15.70 
a.  For each µB range, α varies monotonically from αmin to 0.05 
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Extreme Poisson-II  (paired counting, 1935+)
Critical Boundary (dashed) and Detection Limits (solid)

background counts (b)

gr
os

s 
co

un
ts

 (y
)
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Extreme Poisson: NIST example
(85 min screening experiment for 85Kr)

• 5 mL gas counter; bg = 1.2 counts/hour; Eff = 0.65

• well-known blank, t=85 min: µB = 1.70 counts 

• yC = 4 counts; SD = (9.15-1.70) = 7.45 c = 2.25 mBq 85Kr

• yobs = 1 count: 90 % CI (µy) = ½ (χ2,0.05
2, χ4,0.95

2) = (0.051, 

4.74) counts: equivalent to an upper limit of 0.92 mBq

• paired observations, t=85 min

• SD (for µB = 1.70 c) = (14.6-1.7) = 12.9 c = 3.9 mBq 85Kr
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Extreme Poisson-II: (paired counting)
Count Contours at yD (□, 14.6) and µB (*, 1.7) 

b-counts

y-
co

un
ts

critical

boundary
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Extreme Poisson-II
3D histogram  (at yD = 14.6 counts)

background counts (b)

gross 
counts (

y)
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Concluding Observations

• The "false positive" problem can be avoided

• Extreme low-level counts addressed in the "ancient 

literature"  (1939; 1972)

• Modern example: well-known bg, and paired counting 

"screening" limits for 85Kr  (NIST low-level gas counter)

• Finally: dodder seeds, and a footnote on history  (1939)
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Extreme Poisson-II: historical footnote on 
the work of Przyborowski and Wilenski

A. dodder seeds as 
discrete, rare objects in 
clover, analog to trace 
radioactivity -- both 
described by the 
Poisson distribution.

B. 1939: editor completes 
revision, because 
communication with 
authors impossible --
beginning of WWII.

Herbal "olfaction": dodder finds its 
way to host (tomato plant) through 
volatile chemical cues [J.B. Runyon, 
et al., Science 313 (2006) 1964].
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